シラバス参照

講義科目名	地球内部ダイナミクス
科目ナンバリングコード	SCI-EPS6309
講義題目	火山物理学
授業科目区分	大学院科目 / Specialized Courses
開講年度	2020
開講学期	前期
曜日時限	前期 木曜日 2時限
必修選択	選択 / Elective
単位数	2
担当教員	吉田 茂生
開講学部・学府	理学府
対象学部等	地球惑星科学専攻 / Department of Earth and Planetary Sciences
対象学年	修士課程 / Master's course
開講地区	伊都地区
その他 (自由記述欄)	教員の連絡先は以下の通りです。 yoshida.shigeo.305[at]m.kyushu-u.ac.jp [at]を@に変えてください。

履修条件	カ学, 連続体力学, 熱学についての知識があることが望ましい.
授業概要	①火山における地殻変動の弾性体力学 ②マグマ溜まりの冷却と分化 ③1次元火道流モデル もしくは マグマオーシャンにおける分化 ④(時間があれば)噴煙柱モデル 1. Elastic deformation of the crust related to volcanoes 2. Cooling and differentiation in magma reservoir 3. One-dimensional volcanic conduit flow
授業形態 (項目)	□講義
授業形態 (内容)	この授業は Microsoft Teams を使ってネット同時配信(音声のみ+講義ノート)で行いたいと思っています。指定されている教室に集まる必要はありません。 開講時間は時間割どおり、木曜日の10時30分から12時です。 moodle (https://moodle.skyushu-uac.jp) を使いますので、使えるようにしておいてください。moodle の使い方はそこに SSO-KID でログインすれば、マニュアルがあるので見ておいてください。 履修希望者は、moodle にて本講義を登録してください。moodle システムは履修登録システムとは別なので、両方に登録することをお忘れなく。 そのうえで、授業開始日(5/7)には、10時半までに本講義のページ (https://moodle.s.kyushu-u.ac.jp/course/view.php?id=21952) を開いて授業開始を待っていてください。
使用する教材等	オンライン講義では、主として音声資料(mp3)と講義ノート(pdf) 対面講義ができるようになったら、主として板書 補助的にテキスト(紙媒体)、スライド資料(電子媒体)、映像・音声資料
全体の教育目 標	物理学の火山への応用を学ぶ。

1 / 2 2020/08/06 16:19

個別の教育目 標	①火山における地殻変動の弾性体力学による取り扱い方を学ぶ ②マグマ溜まりの冷却と分化への熱力学と流体力学の応用を学ぶ ③火道の流れの流体力学による取り扱い方を学ぶ ④(時間があれば)噴煙柱の流体力学による取り扱い方を学ぶ
授業計画	①~③の各項目を5回程度ずつの授業で行う。 休講予定:欠席者が多いことが予定される日は休講とする。
キーワード	マグマだまり、火道
授業の進め方	プリント,板書による講義を中心とし,演習問題など解いて理解を深める.
テキスト	特になし
参考書	Stacey and Davis; 本多了ほか訳 (2013) 地球の物理学事典, 朝倉書店 Turcotte and Schubert, Geodynamics (2014) Geodynamics, Third Edition, Cambridge University Press Paul Segall (2010) Earthquake ad Volcano Deformation, Princeton University Press 小屋口剛博 (2008) 火山現象のモデリング, 東大出版会 その他, 上記のテーマに関する代表的な論文や教科書を授業において指示する.
学習相談	授業開講日の 13:00-17:00
試験/成績評 価の方法等	評価方法:出席, レポートを総合的に判断して評価する. 評価基準:出席, レポートを総合的に判断し60点以上を合格とする.
その他	積極的態度で講義に臨むこと.
添付ファイル	
更新日付	2020/05/07 20:13

2 / 2 2020/08/06 16:19